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Why are ultrasound (US) images of thyroid 
nodules suitable for deep learning (DL) analysis?

DL is a part of artificial intelligence (AI) systems, which 
is designed to have human’s way of thinking. DL has been 
applied in medical image analysis such as chest radiographs, 
retinal image, pathology, and US images, and showed 
comparable diagnostic performance with clinicians (1-4). To 
allow the DL to analyze images, we should input hundreds 
or thousands of images labelled with the answers, which 
is called training. Then the DL algorithm trains itself by 

extracting specific features from the images, and becomes 
able to predict the answer when a new test image is given. 
For instance, if one properly trains a DL algorithm with 
multiple images of cats and dogs labelled with the answers, 
the DL extracts the features of the two species and finally 
becomes to be able to differentiate them. 

Neck US is a safe diagnostic imaging modality and the 
gold standard method for evaluation of thyroid nodules (5).  
Moreover, recent high-resolution US is easily utilized by 
clinicians for obtaining and interpreting sonographic neck 
images including thyroid nodules. The characteristics 
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of these nodules can be captured in one representative 
image making thyroid US suitable for DL analysis using 
convolutional neural network. This can be established by 
adding the features of thyroid nodules obtained by US to 
a DL algorithm in the form of a whole captured image or 
alternatively by cropping the image into multiple squares. 
The latter is generally preferred to avoid the influence of 
neighboring structures such as trachea, carotid artery, or 
muscles on the efficacy and accuracy of a DL algorithm. 

Previous studies using Computer-aided 
diagnosis (CAD) for thyroid nodule US images

CAD system is based on classical machine learning. Unlike 
DL which itself determines and extracts key features from 
the images, CAD system requires that human should define 
the key features of a subject on which the prediction is 
based. In the CAD system for thyroid US, human should 
define the malignant features of the thyroid nodules such 
as irregular margin, taller-than-wide shape, markedly 
hypoechoic echogenicity, and presence of calcification to 
allow the CAD to predict malignant nodules. Then, the 
CAD quantifies each predetermined feature and eventually 
predicts if the given nodule is benign or malignant. 

Choi et al. (6) used commercialized CAD system for 
the diagnosis of US images of thyroid nodules. They 
reported that CAD system showed a similar sensitivity as 
the experienced radiologist (90.7% vs. 88.4%) and lower 
specificity (74.6% vs. 94.9%). Similarly, Jeong et al. (7) used 
the same commercialized CAD system and reported that the 
CAD system had comparable sensitivity and lower specificity 
than experienced radiologist. The reason for the relatively 
high sensitivity and low specificity could be because the CAD 
system is more sensitive and consistent than the human in 
identifying the malignant features of thyroid nodules (Table 1). 

Previous studies using DL for thyroid nodule US 
images

Unlike CAD, DL does not require predetermination of 

malignant features but instead the final result of the thyroid 
biopsy or the specimen. After introducing these results in 
a DL algorithm, DL works to independently determine 
the different radiographic features (unbeknownst to the 
clinician) that are used to interpret future US images. 
Interestingly, these features may not include the standard 
factures we use for US diagnosis (e.g., size, shape, etc.). 
Furthermore, we cannot know the features that DL uses 
for training or prediction, and thus the DL algorithm 
is referred to as a black box. DL algorithms generally 
outperform CAD systems, and the majority of recent 
studies use DL.

Ko et al. (8) used 439 US images for the training set and 
tested 150 images, and reported that DL algorithm showed 
comparable performance with radiologists (AUC 0.834 to 
0.850 for DL and 0.805 to 0.860 for radiologist). Moreover, 
Song et al. (9) used 1,358 images from a training dataset and 
tested an algorithm with an internal (n=55) and external 
(n=100) test set. The sensitivity for the internal and external 
test set was 95.2% and 94.0% respectively. Buda et al. (10) 
used images from 1,278 and 99 nodules as a training and test 
set, respectively. They reported 87% sensitivity and 52% 
specificity in recommending further intervention, which 
was comparable with that recommended by radiologists. 

How do we obtain enough images for successful 
DL algorithm training?

To train the DL algorithm using US images only, which is 
called training from scratch, a large amount of labeled US 
images are necessary because the diagnostic performance 
of a DL algorithm improves according to the size of the 
training dataset (11). However, the amount of collectable 
data is limited due to manpower and costs restrictions. In 
addition, it is unknown how many images are required for 
successful training. There are several methods however 
to address this limitation. One of the popular methods is 
transfer learning which saves time as it uses a pre-trained 
model. A pre-trained model is trained on a large benchmark 
dataset to solve a problem similar to the one that we want 
to solve. For instance, Inception is one of the most popular 
models, and pre-trained with the ImageNet database, which 
contains over 1.2 million images of commonly seen items in 
daily life. Using a pre-trained model is more efficient than 
training the whole layer of the DL algorithm despite the 
dataset not including medical or includes US images (12). 

Another method is data augmentation. Data augmentation 
generates more images artificially by changing the ratio of 

Table 1 Ultrasonic Features suggestive of malignant thyroid nodules 

Hypoechoic nodule

Taller than wide shape of the nodule

Irregular margin of the nodules

Presence of microcalcifications
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width to height, adding noise, changing colors, or using 
horizontal flip. It is reported to be helpful to achieve better 
DL performance (13). Although data augmentation is useful 
to increase the size of a training set and has been used in 
thyroid nodule image analysis (14), caution should be taken 
because it has a high potential to distort shape, margin, 
echogenicity, and calcification, which are essential elements 
for sonographic diagnosis of thyroid nodules (15). 

Limitations of DL analysis for thyroid nodule US 
images

Limitations in US image collection 

US is a convenient and reliable diagnostic tool when 
evaluating thyroid nodules. In general, one representative 
image contains enough information to delineate the nature 
of the nodule. Therefore, US fits well with the concept 
of DL. Regardless, there are high intra- and inter-reader 
variability in US image acquisition, and there is still a 
chance that the captured image of a thyroid nodule may not 
completely represent the lesion. For example, the features 
suggesting malignancy such as micro-calcification or 
irregular margin may not be adequately captured, or some 
features may look differently between axial and transverse 
images. This limitation might decrease the accuracy of US 
and subsequently the performance of DL. 

Indeterminate category 

American College of Radiology Thyroid Imaging Reporting 
And Data System (ACS TIRADS) is a risk stratification 
system evaluating thyroid nodules (16). The risk of 
malignancy is determined by five categories including 
composition, echogenicity, shape, margin, extra-thyroidal 
extension, and echogenic foci on US. Yet, ACS TIRADS is 
not confirmative, and FNAC is recommended for further 
evaluation of radiologically suspicious nodules. However, 
some FNAC results, which are reported as Bethesda 
categories, are still not confirmative (17). Category III/IV/
V nodules can have diverse results such as benign, follicular 
thyroid carcinoma (FTC), variant type papillary thyroid 
carcinoma (PTC), or PTC on surgical pathology. 

DL analysis of thyroid nodules are solely based on US 
findings. The accuracy of the DL is greatly influenced by the 
proportion of the nodules with indeterminate categories, 
which consists of 16% to 38% of the FNAC-tested  
nodules (18). FTC is usually diagnosed as indeterminate 

or benign category on FNAC, and has more benign 
feature on US than PTC. The more FTC is included 
in the dataset, the worse the diagnostic performance 
should be. Nonetheless, the researchers can increase the 
diagnostic performance of DL algorithm by excluding the 
indeterminate category as well as FTCs in the training or 
test set. However, the results cannot be applicable to real 
practice. This is why the number of indeterminate nodules 
on FNAC such as FTC used for training and testing must 
be mentioned in studies.

To illustrate this, a recently published paper reported 
that DL was trained with more than 300,000 thyroid  
US images, and showed relatively high specificity and 
sensitivity (14). However, of the 17,627 malignant nodules 
they used for training set, only 74 (0.4%) were FTCs, 
and 17,440 (98.9%) were PTC. Moreover, the number of 
FTC used for the test set was only 4 out of 1,194 nodules. 
Considering the incidence of FTC is one seventh of that 
of PTC (19), the results in this study should be interpreted 
carefully. 

Likewise, variant types of PTC such as follicular variant 
PTC, which accounts for 12% to 30% of all PTC, also 
have less malignant US features compared to classical PTC 
(20,21). The more variant types of PTC are included in the 
training or test set, the wores the diagnostic performance 
of DL becomes. Therefore, care must be taken when 
interpreting study results in which most of the included 
malignant nodules are classic PTC (8). 

Additionally, the gold standard in diagnosing a thyroid 
nodule is based on surgical pathology. However, some 
nodules are not removed by surgery, and the ultimate 
diagnosis is based on FNAC, with its inherent limitations 
mentioned above (9,22). 

Nodules with indeterminate category on FNAC should 
undergo further evaluation with molecular testing or be 
removed surgically. Therefore, it could be more practical to 
train DL to discriminate thyroid nodules into groups that 
require surgery versus those that do not rather than into 
benign or malignant. Further research however is needed to 
address these concerns. 

Further practical considerations 

The results of DL analysis are presented as probability 
of benignity or malignancy ranging 0 to 1, not simply 
as benign or malignant. In general, benign or malignant 
results are presented based on a probability threshold of 
0.5. However, the threshold can be arbitrarily adjusted as 
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needed, and the sensitivity and the specificity to predict 
malignancy change depending on the threshold. If the 
threshold is set to increase the specificity, the chance for 
misinterpreting true malignant nodules as benign, resulting 
in undertreatment of malignant nodules may increase.

Therefore, the threshold should be set to have high 
sensitivity in order that the false negative rate (predicting 
malignant as benign) can be minimized even if the false 
positive rate (predicting benign as malignant) is somewhat 
high. Considering more than 90% of the thyroid nodules 
which undergo FNAC turn out to be benign (23), and 
misdiagnosis of true benign as malignant would merely 
lead to FNAC, this scenario is desirable because DL can 
help patients to avoid unnecessary FNAC. Using DL as a 
decision support tool can be considered if an experienced 
clinician is not available. 

Lastly, DL algorithms have been trained and tested using 
one 2D US image from each nodule. However, thyroid 
nodules are three-dimensional, and one representative US 
image may not completely reflect all pertinent features. DL 
analysis using multiple US images should be tried in the 
future to increase diagnostic capability. 

Conclusions

Applying DL in the diagnosis of thyroid nodules is still 
in the developmental stage. There are several limitations 
related to efficient collection of US images, setting a proper 
threshold for predicting malignancy, and proper inclusion of 
indeterminate nodules into the dataset. Although currently 
developed DL cannot replace standard practice in the 
diagnosis of thyroid nodules, it might serve as an adjunctive 
tool to support the decision-making process for biopsy and 
surgery in the future. 
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